Images as graphs

- Fully-connected graph
- node for every pixel
- link between every pair of pixels, p,q
- similarity \mathbf{W}_{ij} for each link

Segmentation by Graph Cuts

- Break Graph into Segments

- Delete links that cross between segments
- Easiest to break links that have low cost (low similarity)
- similar pixels should be in the same segments
- dissimilar pixels should be in different segments

Measuring Affinity

- Distance

$$
\operatorname{aff}(x, y)=\exp \left\{-\frac{1}{2 \sigma_{d}^{2}}\|x-y\|^{2}\right\}
$$

- Intensity \quad aff $(x, y)=\exp \left\{-\frac{1}{2 \sigma_{d}^{2}}\|I(x)-I(y)\|^{2}\right\}$
- Color

$$
\operatorname{aff}(x, y)=\exp \{-\frac{1}{2 \sigma_{d}^{2}} \underbrace{\operatorname{dist}(c(x), c(y))^{2}}\}
$$

(some suitable color space distance)

- Texture $\quad a f f(x, y)=\exp \left\{-\frac{1}{2 \sigma_{a}^{2}}\|f(x)-f(y)\|^{2}\right\}$
(vectors of filter outputs)

Cuts in a graph

- Link Cut
- set of links whose removal makes a graph disconnected
- cost of a cut:

$$
\operatorname{cut}(A, B)=\sum_{p \in A, q \in B} c_{p, q}
$$

One idea: Find minimum cut

- gives you a segmentation
- fast algorithms exist for doing this

But min cut is not always the best cut...

Cuts in a graph

Normalized Cut

- a cut penalizes large segments
- fix by normalizing for size of segments

$$
N c u t(A, B)=\frac{\operatorname{cut}(A, B)}{\operatorname{volume}(A)}+\frac{\operatorname{cut}(A, B)}{\operatorname{volume}(B)}
$$

- volume $(A)=$ sum of costs of all edges that touch A

Finding Minimum Normalized-Cut

- Finding the Minimum Normalized-Cut is NPHard.
- Polynomial Approximations are generally used for segmentation

Finding Minimum Normalized-Cut

$W=N \times N$ symmetric matrix, where
$W \backslash j=\left\{\begin{array}{cl}e^{-\| F_{i}-F_{j} \mid / \sigma_{F}^{2}} \times e^{-\left\|X_{i}-X_{j}\right\| / \sigma_{X}^{2}} & \text { if } j \in N \text { 亿 } \\ 0 & \text { otherwise }\end{array}\right.$
$\left\|F_{i}-F_{j}\right\|=$ Image feature similarity
$\left\|X_{i}-X_{j}\right\|=$ Spatial Proximity
$D=N \times N$ diagonal matrix, where $D \mathbb{l i}_{j}=\sum_{j} W j_{-}^{-}$

Finding Minimum Normalized-Cut

- It can be shown that

$$
\min N_{\text {cut }}=\min _{\mathbf{y}} \frac{\mathbf{y}^{\mathrm{T}} \mathbf{O}-\mathbf{W} \overline{\mathbf{y}}}{\mathbf{y}^{\mathrm{T}} \mathbf{D} \mathbf{y}}
$$

such that

$$
y<\leq 1 \leq b,\}<b \leq 1, \text { and } \mathbf{y}^{T} \mathbf{D} \mathbf{1}=0
$$

- If y is allowed to take real values then the minimization can be done by solving the generalized eigenvalue system

$$
\mathbf{O}-\mathbf{W} \overline{\mathbf{y}}=\lambda \mathbf{D} \mathbf{y}
$$

Algorithm

- Compute matrices W \& D
- Solve $\mathbf{O}-\mathbf{W} \overline{\mathbf{y}}=\lambda \mathbf{D y}$ for eigen vectors with the smallest eigen values
- Use the eigen vector with second smallest eigen value to bipartition the graph
- Recursively partition the segmented parts if necessary.

Recursive normalized cuts

1. Given an image or image sequence, set up a weighted graph: $G=(V, E)$

- Vertex for each pixel
- Edge weight for nearby pairs of pixels

2. Solve for eigenvectors with the smallest eigenvalues: ($D-W$) $y=\lambda D y$

- Use the eigenvector with the second smallest eigenvalue to bipartition the graph
- Note: this is an approximation

4. Recursively repartition the segmented parts if necessary

Details: http://www.cs.berkeley.edu/~malik/papers/SM-ncut.pdf

Normalized cuts results

Graph cuts segmentation

The st-Mincut Problem

-An st-cut (S,T) divides the nodes between source and sink

- The cost of the cut is the sum of costs of all edges going from S to T
- The st-min-cut is the cut with lowest cost
- Each node is either assigned to the source S or sink T
- The cost of the edge (i, j) is taken if $(\mathrm{i} \in \mathrm{S})$ and $(\mathrm{j} \in \mathrm{T})$

The st-Mincut Problem

Min-cut \backslash Max-flow Theorem

In every network, the maximum flow equals the cost of the st-mincut

Max flow $=\min$ cut $=7$

Next: the augmented path algorithm for computing the max-flow/min-cut

Maxflow Algorithms

Flow $=0$

Augmenting Path Based Algorithms

1. Find path from source to sink with positive capacity
2. Push maximum possible flow through this path
3. Repeat until no path can be found

Maxflow Algorithms

Flow = 2

Augmenting Path Based Algorithms

1. Find path from source to sink with positive capacity
2. Push maximum possible flow through this path
3. Repeat until no path can be found

Maxflow Algorithms

Flow $=2$

Source

Augmenting Path Based Algorithms

1. Find path from source to sink with positive capacity
2. Push maximum possible flow through this path
3. Repeat until no path can be found

Maxflow Algorithms

Flow $=6$

Augmenting Path Based Algorithms

1. Find path from source to sink with positive capacity
2. Push maximum possible flow through this path
3. Repeat until no path can be found

Maxflow Algorithms

Flow = $6+1$

Augmenting Path Based Algorithms

1. Find path from source to sink with positive capacity
2. Push maximum possible flow through this path
3. Repeat until no path can be found

Maxflow Algorithms

Flow = 7

Min-cut $=\mathbf{7}$

Markov Random Fields

Cost to assign a label to each pixel

Cost to assign a pair of labels to connected pixels

Energy $(\mathbf{y} ; \theta$, data $)=\sum_{i} \psi_{1}\left(y_{i} ; \theta\right.$, data $) \sum_{i, j \in e d g e s} \psi_{2}\left(y_{i}, y_{j} ; \theta\right.$, data $)$

Solving MRFs with graph cuts

$$
\text { Energy }(\mathbf{y} ; \theta, \text { data })=\sum_{i} \psi_{1}\left(y_{i} ; \theta, \text { data } \sum_{i, j \in e d g e s} \psi_{2}\left(y_{i}, y_{j} ; \theta, \text { data }\right)\right.
$$

Solving MRFs with graph cuts

$$
\text { Energy }(\mathbf{y} ; \theta, \text { data })=\sum_{i} \psi_{1}\left(y_{i} ; \theta, \text { data }\right) \sum_{i, j \in e d g e s} \psi_{2}\left(y_{i}, y_{j} ; \theta, \text { data }\right)
$$

GraphCut for a Monochrome Image

- User provides a trimap $T=\left\{T_{F}, T_{B}, T_{U}\right\}$ which partitions the image into 3 regions: foreground, background, unknown.

Graph cuts

Boykov and Jolly (2001)

Image

Cut: separating source and sink; Energy: collection of edges
Min Cut: Global minimal enegry in polynomial time

Optimization Formulation - Boykov \& Jolly ‘01

$$
E(A)=\lambda \cdot R(A)+B(A)
$$

where

$$
\begin{aligned}
R(A) & =\sum_{p \in \mathcal{P}} R_{p}\left(A_{p}\right) \\
B(A) & =\sum_{\{p, q\} \in \mathcal{N}} B_{\{p, q\}} \cdot \delta\left(A_{p}, A_{q}\right)
\end{aligned}
$$

and

$$
\delta\left(A_{p}, A_{q}\right)=\left\{\begin{array}{cc}
1 & \text { if } A_{p} \neq A_{q} \\
0 & \text { otherwise }
\end{array}\right.
$$

\square A - Proposed Segmentation
$\square E(A)$ - Overall Energy

- R(A) - Degree to which pixels fits model
- $B(A)$ - Degree to λ 'hich the cuts breaks up similar pixels
- - Balance $A()$ and $B()$
- Goal: Find Segmentation, A, which minimizes $E(A)$

Link Weights

edge	weight (cost)	for
p, q	$B_{\{p, q\}}$	$\{p, q\} \in \mathcal{N}$
	$\lambda \cdot R_{p}$ ("bkg")	$p \in \mathcal{P}, p \notin \mathcal{O} \cup \mathcal{B}$
	K	$p \in \mathcal{O}$
	0	$p \in \mathcal{B}$
p, T	$\lambda \cdot R_{p}($ "obj")	$p \in \mathcal{P}, p \notin \mathcal{O} \cup \mathcal{B}$
	0	$p \in \mathcal{O}$
	K	$p \in \mathcal{B}$

- Pixel links based on color/intensity similarities
- Source/Target links based on histogram models of fore/background

$$
K=1+\max _{p \in \mathcal{P}} \sum_{q:\{p, q\} \in \mathcal{N}} B_{\{p, q\}}
$$

$$
\begin{aligned}
& R_{p}(" \mathrm{obj} ")=-\ln \operatorname{Pr}\left(I_{p} \mid \mathcal{O}\right) \\
& R_{p}(\text { "bkg") }=-\ln \operatorname{Pr}\left(I_{p} \mid \mathcal{B}\right) \\
& B_{\{p, q\}} \propto \exp \left(-\frac{\left(I_{p}-I_{q}\right)^{2}}{2 \sigma^{2}}\right) \cdot \frac{1}{\operatorname{dist}(p, q)} .
\end{aligned}
$$

Grab cuts and graph cuts

Source: Rother

- The image is an array $z=\left(z_{1}, \ldots z_{N}\right)$ of grey values indexed by the single index n.
- The segmentation of the image is an alphachannel, or, a series of opacity values $\boldsymbol{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{N}\right)$ at each pixel with $0 \leq \alpha_{\mathrm{n}} \leq 1$.
- The parameter $\boldsymbol{\theta}$ describes the foreground/background grey-level distributions. i.e. a pair of histogram of gray values:

$$
\theta=\{h(z ; \alpha), \alpha=0,1\}
$$

Segmentation by Energy Minimization

- An energy function \mathbf{E} is defined so that its minimum corresponds to a good segmentation.
- This is captured by a "Gibbs" energy of the form:

$$
\mathrm{E}(\boldsymbol{\alpha}, \boldsymbol{\theta}, \mathbf{z})=\mathbf{U}(\boldsymbol{\alpha}, \boldsymbol{\theta}, \mathbf{z})+\mathbf{V}(\boldsymbol{\alpha}, \mathbf{z})
$$

$\mathrm{E}(\boldsymbol{\alpha}, \boldsymbol{\theta}, \mathbf{z})=\mathbf{U}(\boldsymbol{\alpha}, \boldsymbol{\theta}, \mathbf{z})+\mathbf{V}(\boldsymbol{\alpha}, \mathbf{z})$

- U evaluates the fit of the opacity α to the data \mathbf{z}
$>$ i.e. it gives a good score (low score) if α looks like it's consistent with the histogram.

$$
U(\alpha, \theta, z)=\sum_{n}-\log h\left(z_{n} ; \alpha_{n}\right)
$$

- V is a smoothness term which penalizes if there is too much disparity between neighboring pixel values.

$$
V(\underline{\alpha}, \mathbf{z})=\gamma \sum_{(m, n) \in \mathbf{C}} \operatorname{dis}(m, n)^{-1}\left[\alpha_{n} \neq \alpha_{m}\right] \exp -\beta\left(z_{m}-z_{n}\right)^{2},
$$

$$
\beta=\left(2\left\langle\left(z_{m}-z_{n}\right)^{2}\right\rangle\right)^{-1}
$$

$\mathrm{E}(\boldsymbol{\alpha}, \boldsymbol{\theta}, \mathbf{z})=\mathbf{U}(\boldsymbol{\alpha}, \boldsymbol{\theta}, \mathbf{z})+\mathbf{V}(\boldsymbol{\alpha}, \mathbf{z})$

- Given the energy model we can obtain a segmentation by finding

$$
\alpha=\underset{\alpha}{\arg \min } E(\alpha, \theta)
$$

- Which can be solved using a minimum cut algorithm which gives you a hard segmentation, $\boldsymbol{\alpha}=\{0,1\}$, of the object.

How GrabCut adds to Graph Cut

- The monochrome image model is replaced for color by a Gaussian Mixture Model (GMM) in place of histograms.
- One shot min-cut solution is replaced by an iterative procedure that alternates between estimation and parameter learning
- Allow for incomplete labeling, i.e. the user need only specify the background trimap T_{B} (and implicitly the unknown map T_{U})
- This amounts to one less user interaction step that was required in previous versions.

From this ...

[Specifying foreground and background]

To this ...

[Specifying background only]

Adding the Color Model

- Each pixel z_{n} is now in RGB color space
- Color space histograms are impractical so we use a Gaussian Mixture Model (GMM)
>2 Full-covariance Gaussian mixtures with K components (K ~ 5).
$>$ One for foreground, one for background.
- Add to our model a vector $\boldsymbol{k}=\left\{k_{1} \ldots k_{N}\right\}$, with k_{i} in $\{1 \ldots K\}$
- k_{i} assigns the pixel z_{i} to a unique GMM component (Either from F.G. or B.G. as α dictates)

Colour Model

Gaussian Mixture Model (typically 5-8 components)

New Energy Model

- Must incorporate \boldsymbol{k} into our model:

$$
\mathbf{E}(\boldsymbol{\alpha}, \mathbf{k}, \boldsymbol{\theta}, \mathbf{z})=\mathbf{U}(\boldsymbol{\alpha}, \mathbf{k}, \boldsymbol{\theta}, \mathbf{z})+\mathbf{V}(\boldsymbol{\alpha}, \mathbf{z})
$$

where

$$
\mathbf{U}(\boldsymbol{\alpha}, \mathbf{k}, \boldsymbol{\theta}, \mathbf{z})=\sum_{\mathrm{n}} D\left(\alpha_{\mathrm{n}}, \mathrm{k}_{\mathrm{n}}, \theta, \mathrm{z}_{\mathrm{n}}\right)
$$

- $D\left(\alpha_{\mathrm{n}}, \mathrm{k}_{\mathrm{n}}, \theta_{\mathrm{n}}, \mathrm{z}_{\mathrm{n}}\right)=-\log p\left(\mathrm{z}_{\mathrm{n}} \mid \alpha_{\mathrm{n}}, \mathrm{k}_{\mathrm{n}}, \theta\right)-\log \pi\left(\alpha_{\mathrm{n}}, \mathrm{k}_{\mathrm{n}}\right)$
- Where $\pi(\cdot)$ is a set of mixture weights which satisfy the constraint:

$$
\begin{aligned}
& D\left(\alpha_{n}, k_{n}, \underline{\theta}, z_{n}\right)=-\log \pi\left(\alpha_{n}, k_{n}\right)+\frac{1}{2} \log \operatorname{det} \Sigma\left(\alpha_{n}, k_{n}\right) \\
& \quad+\frac{1}{2}\left[z_{n}-\mu\left(\alpha_{n}, k_{n}\right)\right]^{\top} \Sigma\left(\alpha_{n}, k_{n}\right)^{-1}\left[z_{n}-\mu\left(\alpha_{n}, k_{n}\right)\right] .
\end{aligned}
$$

New Energy Model

- Our θ becomes

$$
\theta=\{\pi(\alpha, k), \mu(\alpha, k), \Sigma(\alpha, k), \alpha=0,1, k=1 \ldots K\}
$$

$\overbrace{c o v .}$
$\overbrace{f g / b g .}$
mixture component

- Total of 2 K Gaussian components

Initialisation

- User initialises trimap T by supplying only T_{B}. The foreground is set to $T_{F}=\emptyset ; T_{U}=\bar{T}_{B}$, complement of the background.
- Initialise $\alpha_{n}=0$ for $n \in T_{B}$ and $\alpha_{n}=1$ for $n \in T_{U}$.
- Background and foreground GMMs initialised from sets $\alpha_{n}=0$ and $\alpha_{n}=1$ respectively.

Iterative minimisation

1. Assign GMM components to pixels: for each n in T_{U},

$$
k_{n}:=\arg \min _{k_{n}} D_{n}\left(\alpha_{n}, k_{n}, \theta, z_{n}\right) .
$$

2. Learn GMM parameters from data \mathbf{z} :

$$
\underline{\theta}:=\underset{\underline{\theta}}{\left.\arg \min _{\underline{\theta}} U(\underline{\alpha}, \mathbf{k}, \underline{\theta}, \mathbf{z}) . .\right) .}
$$

3. Estimate segmentation: use min cut to solve:

$$
\min _{\left\{\alpha_{n}: n \in T_{U}\right\}} \min _{\mathbf{k}} \mathbf{E}(\underline{\alpha}, \mathbf{k}, \underline{\theta}, \mathbf{z}) .
$$

4. Repeat from step 1 , until convergence.
5. Apply border matting (section 4).

User editing

- Edit: fix some pixels either to $\alpha_{n}=0$ (background brush) or $\alpha_{n}=1$ (foreground brush); update trimap T accordingly. Perform step 3 above, just once.
- Refine operation: [optional] perform entire iterative minimisation algorithm.

Moderately straightforward examples

GrabCut completes automatically

Difficult Examples

Fine structure

Harder Case

Camouflage \&

Initial Result

Border Matting

Hard Segmentation

Automatic Trimap

Soft Segmentation

Comparison

With no regularisation over alpha

Input

Bayes Matting Chuang et. al. (2001)

Knockout 2
Photoshop Plug-In

Shum et. al. (2004): Coherence matting in "Pop-up light fields"

Natural Image Matting

Mean Colour Background

Solve

Ruzon and Tomasi (2000): Alpha estimation in natural images

(a)

(b)

(c)

Figure 6: Border matting. (a) Original image with trimap overlaid. (b) Notation for contour parameterisation and distance map. Contour C (yellow) is obtained from hard segmentation. Each pixel in T_{U} is assigned values (integer) of contour parameter t and distance r_{n} from C. Pixels shown share the same value of t. (c) Soft step-function for α-profile g, with centre Δ and width σ.

Border Matting

Fit a smooth alpha-profile with parameters

Dynamic Programming

Result using DP Border Matting

$$
E=\sum_{n \in T_{U}} \tilde{D}_{n}\left(\boldsymbol{\alpha}_{n}\right)+\sum_{t=1}^{T} \tilde{V}\left(\Delta_{t}, \sigma_{t}, \Delta_{t+1}, \sigma_{t+1}\right)
$$

Noisy alpha-profile
Regularisation

GrabCut Border Matting - Colour

- Compute MAP of $\mathrm{p}(\mathrm{F} \mid \mathrm{C}$, alpha) (marginalize over B)
- To avoid colour bleeding use colour stealing ("exemplar based inpainting" - Patches do not work)

[Chuang et al. '01]

Grabcut Border Matting

Results

