Images as graphs

- Fully-connected graph
 - node for every pixel
 - link between every pair of pixels, p,q
 - similarity W_{ij} for each link

Segmentation by Graph Cuts

- Break Graph into Segments
 - Delete links that cross between segments
 - Easiest to break links that have low cost (low similarity)
 - similar pixels should be in the same segments
 - dissimilar pixels should be in different segments

Measuring Affinity

• Distance $aff(x, y) = \exp\left\{-\frac{1}{2\sigma_d^2} \|x - y\|^2\right\}$

• Intensity
$$aff(x, y) = \exp\left\{-\frac{1}{2\sigma_d^2} \left\|I(x) - I(y)\right\|^2\right\}$$

• Color
$$aff(x, y) = \exp\left\{-\frac{1}{2\sigma_d^2} dist(c(x), c(y))^2\right\}$$

(some suitable color space distance)

• Texture
$$aff(x, y) = \exp\left\{-\frac{1}{2\sigma_d^2} \left\| f(x) - f(y) \right\|^2\right\}$$

(vectors of filter outputs)

Cuts in a graph

- Link Cut
 - set of links whose removal makes a graph disconnected
 - cost of a cut:

$$cut(A,B) = \sum_{p \in A, q \in B} c_{p,q}$$

One idea: Find minimum cut

- gives you a segmentation
- fast algorithms exist for doing this

But min cut is not always the best cut...

Cuts in a graph

Normalized Cut

- a cut penalizes large segments
- fix by normalizing for size of segments

$$Ncut(A,B) = \frac{cut(A,B)}{volume(A)} + \frac{cut(A,B)}{volume(B)}$$

volume(A) = sum of costs of all edges that touch A

Finding Minimum Normalized-Cut

- Finding the Minimum Normalized-Cut is NP-Hard.
- Polynomial Approximations are generally used for segmentation

Finding Minimum Normalized-Cut

 $W = N \times N$ symmetric matrix, where

$$W \blacktriangleleft j = \begin{cases} e^{-\|F_i - F_j\|/\sigma_F^2} \times e^{-\|X_i - X_j\|/\sigma_X^2} & \text{if } j \in N \blacktriangleleft \\ 0 & \text{otherwise} \end{cases}$$

$$\|F_i - F_j\| =$$
 Image feature similarity
 $\|X_i - X_j\| =$ Spatial Proximity

 $D = N \times N$ diagonal matrix, where $D(i) = \sum_{i=1}^{N} W(i)$

8

Finding Minimum Normalized-Cut

• It can be shown that $\min N_{cut} = \min_{\mathbf{y}} \frac{\mathbf{y}^{\mathrm{T}} \mathbf{\Phi} - \mathbf{W} \mathbf{y}}{\mathbf{y}^{\mathrm{T}} \mathbf{D} \mathbf{y}}$

such that

$$y \in \mathbb{R} - b$$
, $0 < b \le 1$, and $\mathbf{y}^T \mathbf{D} \mathbf{1} = 0$

• If y is allowed to take real values then the minimization can be done by solving the generalized eigenvalue system

$$\mathbf{\Phi} - \mathbf{W}\mathbf{y} = \lambda \mathbf{D}\mathbf{y}$$

9

Algorithm

- Compute matrices W & D
- Solve $\Phi W y = \lambda D y$ for eigen vectors with the smallest eigen values
- Use the eigen vector with second smallest eigen value to bipartition the graph
- Recursively partition the segmented parts if necessary.

Recursive normalized cuts

- 1. Given an image or image sequence, set up a weighted graph: G=(V, E)
 - Vertex for each pixel
 - Edge weight for nearby pairs of pixels
- 2. Solve for eigenvectors with the smallest eigenvalues: $(D - W)y = \lambda Dy$
 - Use the eigenvector with the second smallest eigenvalue to bipartition the graph
 - Note: this is an approximation
- 4. Recursively repartition the segmented parts if necessary

Details: <u>http://www.cs.berkeley.edu/~malik/papers/SM-n**cut**.pdf</u>

Normalized cuts results

Graph cuts segmentation

The st-Mincut Problem

•An st-cut (S,T) divides the nodes between source and sink

- The cost of the cut is the sum of costs of all edges going from S to T
- The st-min-cut is the cut with lowest cost
- Each node is either assigned to the source S or sink T
- The cost of the edge (i, j) is taken if (i $\!\in\! S$) and (j $\!\in\! T$)

The st-Mincut Problem

•An st-cut (**S**,**T**) divides the nodes between source and sink

• The cost of the cut is the sum of costs of all edges going from S to T

• The st-min-cut is the cut with lowest cost

Each node is either assigned to the source S or sink T

The cost of the edge (i, j) is taken if $(i \in S)$ and $(j \in T)$

Min-cut\Max-flow Theorem

In every network, the maximum flow equals the cost of the st-mincut

Max flow = min cut = 7

Next: the augmented path algorithm for computing the max-flow/min-cut

Flow = 0

- Find path from source to sink with positive capacity
- 2. Push maximum possible flow through this path
- 3. Repeat until no path can be found

Flow = 2

- 1. Find path from source to sink with positive capacity
- 2. Push maximum possible flow through this path
- Repeat until no path can be found

Flow = 2

- Find path from source to sink with positive capacity
- 2. Push maximum possible flow through this path
- Repeat until no path can be found

Flow = 6

- Find path from source to sink with positive capacity
- 2. Push maximum possible flow through this path
- Repeat until no path can be found

Flow = 6 + 1

- Find path from source to sink with positive capacity
- 2. Push maximum possible flow through this path
- Repeat until no path can be found

Flow = 7

Min-cut = 7

Markov Random Fields

Solving MRFs with graph cuts

Solving MRFs with graph cuts

GraphCut for a Monochrome Image

• User provides a trimap $T = \{T_F, T_B, T_U\}$ which partitions the image into 3 regions: foreground, background, unknown.

Graph cuts

Boykov and Jolly (2001)

Image

Cut: separating source and sink; Energy: collection of edges *Min Cut:* Global minimal enegry in polynomial time

Source: Rother

Optimization Formulation - Boykov & Jolly '01

$$E(A) = \lambda \cdot R(A) + B(A)$$

where

$$R(A) = \sum_{p \in \mathcal{P}} R_p(A_p)$$
$$B(A) = \sum_{\{p,q\} \in \mathcal{N}} B_{\{p,q\}} \cdot \delta(A_p, A_q)$$

and

$$\delta(A_p, A_q) = \begin{cases} 1 & \text{if } A_p \neq A_q \\ 0 & \text{otherwise.} \end{cases}$$

Goal: Find Segmentation,
 A, which minimizes E(A)

- A Proposed Segmentation
- E(A) Overall Energy
- R(A) Degree to which pixels fits model
- B(A) Degree to
 which the cuts breacher
 - λ hich the cuts breaks up similar pixels
- Balance A() and B()

Link Weights

edge	weight (cost)	for
$\{p,q\}$	$B_{\{p,q\}}$	$\{p,q\}\in \mathcal{N}$
	$\lambda \cdot R_p(\texttt{``bkg''})$	$p \in \mathcal{P}, \ p \notin \mathcal{O} \cup \mathcal{B}$
$\{p,S\}$	K	$p\in \mathcal{O}$
	0	$p \in \mathcal{B}$
	$\lambda \cdot R_p(\text{``obj''})$	$p \in \mathcal{P}, \ p \notin \mathcal{O} \cup \mathcal{B}$
$\{p,T\}$	0	$p\in \mathcal{O}$
	K	$p \in \mathcal{B}$

 $K = 1 + \max_{p \in \mathcal{P}} \sum_{q: \{p,q\} \in \mathcal{N}} B_{\{p,q\}}$

- Pixel links based on color/intensity similarities
- Source/Target links based on histogram models of fore/background

$$R_p(\text{``obj''}) = -\ln \Pr(I_p|\mathcal{O})$$
$$R_p(\text{``bkg''}) = -\ln \Pr(I_p|\mathcal{B}).$$

$$B_{\{p,q\}} \propto exp\left(-\frac{(I_p - I_q)^2}{2\sigma^2}\right) \cdot \frac{1}{dist(p,q)}.$$

Grab cuts and graph cuts

Magic Wand (198?)

Result

Regions

Intelligent Scissors Mortensen and Barrett (1995)

Boundary

GrabCut

Regions & Boundary

Source: Rother

- The image is an array $z = (z_1, ..., z_N)$ of grey values indexed by the single index *n*.
- The segmentation of the image is an alphachannel, or, a series of opacity values $\alpha = (\alpha_1, ..., \alpha_N)$ at each pixel with $0 \le \alpha_n \le 1$.
- The parameter θ describes the foreground/background grey-level distributions. i.e. a pair of histogram of gray values:

$$\theta = \{h(z; \alpha), \alpha = 0, 1\}$$

Segmentation by Energy Minimization

- An energy function **E** is defined so that its minimum corresponds to a good segmentation.
- This is captured by a "Gibbs" energy of the form:

 $E(\alpha, \theta, z) = U(\alpha, \theta, z) + V(\alpha, z)$

$E(\alpha, \theta, z) = U(\alpha, \theta, z) + V(\alpha, z)$

U evaluates the fit of the opacity α to the data z
 > i.e. it gives a good score (low score) if α looks like it's consistent with the histogram.

$$U(\alpha, \theta, z) = \sum_{n} -\log h(z_n; \alpha_n)$$

• V is a smoothness term which penalizes if there is too much disparity between neighboring pixel values.

$$V(\underline{\alpha},\mathbf{z}) = \gamma \sum_{(m,n)\in\mathbf{C}} dis(m,n)^{-1} \ [\alpha_n \neq \alpha_m] \exp{-\beta (z_m - z_n)^2},$$

$$\beta = \left(2\left\langle (z_m - z_n)^2 \right\rangle\right)^{-1}$$

$E(\alpha, \theta, z) = U(\alpha, \theta, z) + V(\alpha, z)$

• Given the energy model we can obtain a segmentation by finding

$$\alpha = \arg\min_{\alpha} E(\alpha, \theta)$$

Which can be solved using a minimum cut algorithm which gives you a hard segmentation, α = {0,1}, of the object.

How GrabCut adds to Graph Cut

- The monochrome image model is replaced for color by a Gaussian Mixture Model (GMM) in place of histograms.
- One shot min-cut solution is replaced by an iterative procedure that alternates between estimation and parameter learning
- Allow for incomplete labeling, i.e. the user need only specify the background trimap T_B (and implicitly the unknown map T_U)

• This amounts to one less user interaction step that was required in previous versions.

From this ...

[Specifying foreground and background]

To this ...

[Specifying background only]

Adding the Color Model

- Each pixel z_n is now in RGB color space
- Color space histograms are impractical so we use a Gaussian Mixture Model (GMM)
 - 2 Full-covariance Gaussian mixtures with K components (K ~ 5).
 - One for foreground, one for background.
- Add to our model a vector $\mathbf{k} = \{k_1 \dots k_N\}$, with k_i in $\{1 \dots K\}$
- k_i assigns the pixel z_i to a unique GMM component (Either from F.G. or B.G. as α dictates)

Colour Model

Gaussian Mixture Model (typically 5-8 components)

Source: Rother

New Energy Model

• Must incorporate *k* into our model:

$$E(\alpha, \mathbf{k}, \theta, \mathbf{z}) = U(\alpha, \mathbf{k}, \theta, \mathbf{z}) + V(\alpha, \mathbf{z})$$

where

$$\mathbf{U}(\boldsymbol{\alpha},\mathbf{k},\boldsymbol{\theta},\mathbf{z}) = \sum_{n} D(\boldsymbol{\alpha}_{n},\mathbf{k}_{n},\boldsymbol{\theta},\mathbf{z}_{n})$$

- $D(\alpha_n, \mathbf{k}_n, \theta_n, \mathbf{z}_n) = -\log p(\mathbf{z}_n \mid \alpha_n, \mathbf{k}_n, \theta) \log \pi(\alpha_n, \mathbf{k}_n)$
- Where π(·) is a set of mixture weights which satisfy the constraint:

$$D(\alpha_n, k_n, \underline{\theta}, z_n) = -\log \pi(\alpha_n, k_n) + \frac{1}{2}\log \det \Sigma(\alpha_n, k_n) + \frac{1}{2}[z_n - \mu(\alpha_n, k_n)]^\top \Sigma(\alpha_n, k_n)^{-1}[z_n - \mu(\alpha_n, k_n)].$$

New Energy Model

• Our θ becomes

 $\theta = \{\pi(\alpha, k), \, \mu(\alpha, k), \, \Sigma(\alpha, k), \, \alpha = 0, 1, \, k = 1 \dots K\}$

• Total of 2K Gaussian components

Initialisation

- User initialises trimap T by supplying only T_B . The foreground is set to $T_F = \emptyset$; $T_U = \overline{T}_B$, complement of the background.
- Initialise $\alpha_n = 0$ for $n \in T_B$ and $\alpha_n = 1$ for $n \in T_U$.
- Background and foreground GMMs initialised from sets $\alpha_n = 0$ and $\alpha_n = 1$ respectively.

Iterative minimisation

- 1. Assign GMM components to pixels: for each n in T_U , $k_n := \arg \min_{k_n} D_n(\alpha_n, k_n, \theta, z_n).$
- 2. Learn GMM parameters from data z:

 $\underline{\theta} := \arg\min_{\underline{\theta}} U(\underline{\alpha}, \mathbf{k}, \underline{\theta}, \mathbf{z})$

3. Estimate segmentation: use min cut to solve:

 $\min_{\{\alpha_n: n\in T_U\}} \min_{\mathbf{k}} \mathbf{E}(\underline{\alpha}, \mathbf{k}, \underline{\theta}, \mathbf{z}).$

- 4. Repeat from step 1, until convergence.
- 5. Apply border matting (section 4).

User editing

- *Edit:* fix some pixels either to α_n = 0 (background brush) or α_n = 1 (foreground brush); update trimap T accordingly. Perform step 3 above, just once.
- Refine operation: [optional] perform entire iterative minimisation algorithm.

Moderately straightforward examples

... GrabCut completes automatically

Difficult Examples

Camouflage & Low Contrast

Fine structure

Harder Case

Initial Result

Border Matting

Hard Segmentation

Automatic Trimap

Soft Segmentation

to

Comparison

With no regularisation over alpha

Input

Bayes Matting Chuang et. al. (2001) Knockout 2 Photoshop Plug-In

Shum et. al. (2004): Coherence matting in "Pop-up light fields"

Natural Image Matting

Solve

Ruzon and Tomasi (2000): Alpha estimation in natural images

Figure 6: **Border matting.** (a) Original image with trimap overlaid. (b) Notation for contour parameterisation and distance map. Contour C (yellow) is obtained from hard segmentation. Each pixel in T_U is assigned values (integer) of contour parameter t and distance r_n from C. Pixels shown share the same value of t. (c) Soft step-function for α -profile g, with centre Δ and width σ .

Border Matting

Fit a smooth alpha-profile with parameters

Dynamic Programming

Result using DP Border Matting

$$E = \sum_{n \in T_U} \tilde{D}_n(\boldsymbol{\alpha}_n) + \sum_{t=1}^T \tilde{V}(\Delta_t, \boldsymbol{\sigma}_t, \Delta_{t+1}, \boldsymbol{\sigma}_{t+1})$$

Noisy alpha-profile Regularisation

GrabCut Border Matting - Colour

 Compute MAP of p(F|C,alpha) (marginalize over B)
 To avoid colour bleeding use colour stealing ("exemplar based inpainting" – Patches do not work)

[Chuang et al. '01]

Grabcut Border Matting

Results

GrabCut – Interactive Foreground Extraction